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Abstract

Background: Individuals with chronic ankle instability (CAI) exhibit many biomechanical changes to lower limbs
during walking. However, only a few studies have investigated the differences in lower limb biomechanics of
individuals with CAl compared to healthy controls using a comprehensive approach including kinematic, kinetic
and electromyography (EMG) measures. Consequently, the theoretical framework explaining the biomechanical
adaptations in individuals with CAl is mostly based on the results of studies including heterogenous methods and
participants’ specificities (e.g., level of disability). More studies using a comprehensive approach are needed to
better understand the biomechanical adaptations associated with CAl. The objective of this case-control study was
to identify the kinematic, kinetic and EMG differences between individuals with CAl and healthy controls during
walking.

Methods: Twenty-eight individuals with CAl and 26 healthy controls were recruited to walk at a self-selected speed
during which lower limb kinematics, kinetics and EMG were analysed. Ankle and knee angles and moments as well
as gluteus medius, vastus lateralis, gastrocnemius lateralis, peroneus longus and tibialis anterior muscles activity
were compared between the CAl and control groups using one-dimensional statistical parametric mapping.

Results: The CAI group exhibited greater ankle inversion angles from 14 to 48% of the stance phase (%SP) (p =
0.008), ankle eversion moments from 40 to 78%SP (p < 0.001), knee abduction moments from 3 to 6%SP and
peroneus longus muscle activity from 0 to 15%SP (p =0.003) and 60 to 76%SP (p =0.003) compared to the control
group. No significant between-group differences in ankle sagittal and transverse angles and moments, knee angles,
knee sagittal and transverse moments as well as gluteus medius, vastus lateralis, gastrocnemius lateralis and tibialis
anterior muscles activity were found.

Conclusions: During the first half of the stance phase, individuals with CAl could be at more risk of sustaining
recurrent LAS mostly due to greater ankle inversion angles. However, the greater ankle eversion moments and
peroneus longus muscle activity during the second half of the stance phase were an efficient mechanism to correct
this maladaptive gait pattern and allowed to attenuate the faulty ankle movements during the pre-swing phase.
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Background

Lateral ankle sprains (LAS) are very common in the ac-
tive population [1] with nearly two million annual re-
ported cases in the United States of America [2].
However, the true incidence of LAS is a lot higher con-
sidering that 55 to 64% of individuals sustaining a LAS
will not seek professional health care [3, 4]. Seventy per-
cent of individuals will sustain at least one recurrent
sprain after the index LAS [5] and 40% will develop
chronic ankle instability (CAI) [6]. CAI is characterised
by a propensity for recurrent LAS at least 12 months
after the index LAS, frequent episodes of ankle giving
way, persistent symptoms such as pain, swelling, limited
motion, weakness and diminished self-reported function
[7]. CAI leads to altered balance control, ankle neuro-
muscular function, and lower limb biomechanics during
locomotion [8-10]. These deficits place individuals with
CALI at greater risk of sustaining recurrent sprains [11],
developing post-traumatic ankle osteoarthritis [12] and
consequently decreasing their health-related quality of
life [13].

Since several decades, clinical gait analysis provides
objective useful information about the mechanical and
neuromuscular deficits in individuals with CAI [8]. Dur-
ing walking, individuals with CAI exhibit greater ankle
inversion angles [14—16] which place more load under
the lateral part of the foot [17, 18]. These biomechanical
deficits could predispose their ankle to give way and sus-
tain a recurrent sprain [8]. To attenuate this cascade of
biomechanical events, a greater activity of the peroneus
longus muscle, the main evertor of the ankle complex, is
observed in these individuals [14, 17, 18] and could rep-
resent a protective mechanism [14]. Changes in other
lower limb muscles’ activity in individuals with CAI are
inconsistent in previous studies [8]. It could be attrib-
uted to the spectrum of disability associated with CAI
[7] and by the great disparity in reported EMG analyses
[8]. There is a need to standardise the processing and
normalisation methods in studies investigating EMG of
the lower limbs in individuals with CAI to increase the
external validity of the published results.

Previous studies reported inconsistent knee biomech-
anics deficits in individuals with CAI [14-16, 19, 20]. A
few studies found no differences between the knee bio-
mechanics of individuals with CAI compared to healthy
controls [14, 16, 19]. Also, two recent studies reported
conflicting results when comparing knee moments be-
tween these two groups [15, 20]. Moisan et al. [20] re-
ported greater and Son et al. [15] reported smaller knee
abduction moments in individuals with CAI compared
to controls during walking. Further studies are needed
to better understand the proximal adaptations to the
lower limb biomechanics during walking. Also, only a
few studies investigated the biomechanics of the lower
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limbs of individuals with CAI compared to healthy con-
trols [15, 20] using a comprehensive approach including
kinematic, kinetic and EMG measures. Consequently,
the theoretical framework explaining the biomechanical
adaptations in individuals with CAI is mostly based on
the results of studies including heterogeneous methods
and participants’ specificities (e.g., level of disability).
More studies using a comprehensive approach are
needed to identify the biomechanical adaptations associ-
ated with CAI for the same population and investigate
how kinematic, kinetic and EMG adaptations interact.

The objective of this case-control study was to identify
the kinematic, kinetic and EMG differences between in-
dividuals with CAI and controls during overground
walking. It was hypothesised that individuals with CAI
will exhibit greater ankle inversion angles and peroneus
longus muscle activity as well as smaller ankle inversion
moments compared to controls.

Methods

Participants

Fifty-four participants (CAI =28, controls = 26) were re-
cruited among the staff and students of the Université
du Québec a Trois-Rivieres (UQTR), Canada, by means
of referral from the UQTR outpatient podiatry clinic
and via social media advertisements. Sample size was de-
termined, using the preliminary results of this study,
with G-Power software (Version 3.1, Kiel, Germany). It
was determined that, for ankle frontal angles and mo-
ments, at least 50 participants were necessary to obtain a
Cohen’s d effect size > 0.50 using alpha< 0.05 and beta>
0.80. To ensure adequate power owing technical difficul-
ties during data acquisition or analyses, 54 participants
were included in this study. The used inclusion criteria
for the CAI group were based on the recommendations
of the International Ankle Consortium [21] except for
the confirmation of self-reported ankle instability with a
validated questionnaire, as no French versions were
available at the time of data collection. Participants with
CAI had a history of one or more LAS, ankle giving way
and/or recurrent sprains and/or feeling of ankle instabil-
ity. They had to score less than 90 and 80% at the Foot
and Ankle Ability Measures-Activity of Daily Living
(FAAM-ADL) and FAAM-Sports (FAAM-S) subscales,
respectively. Participants in the control group had never
sustained a LAS. Exclusion criteria for all participants
were a history of a lower limb musculoskeletal injury in
the 3-month period prior to the study onset, a previous
surgery to lower limb musculoskeletal structures, a his-
tory of a lower limb fracture that needed realignment
and neurological conditions affecting walking biomech-
anics. If bilateral CAI was reported, the less stable ankle,
subjectively decided by participants, was used in the ana-
lyses. Prior to their enrolment in the study, all
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participants provided a written consent to a protocol ap-
proved by the Université du Québec a Trois-Rivieres
Ethics Committee (CER-18-244-07.04).

Experimental protocol

Before undertaking the clinical gait analysis, participants
had to fill the validated French version of the FAAM-
ADL, FAAM-S [22] and International Physical Activity
Questionnaire (IPAQ) [23] subscales. Participants also
had to report the number of previous LAS and the time
since the most recent LAS. Participants’ age, height and
weight were registered. To quantify participants’ foot
morphology, a licensed podiatrist (GM) administered the
Foot Posture Index (FPI) [24]. During the clinical gait
analysis, lower limb kinematics was recorded using a
three-dimensional active motion analysis system (Opto-
trak Certus, Northern Digital, Waterloo, ON, Canada) at
a sampling rate of 100 Hz. Four three-marker clusters
were respectively positioned on the sacrum, the distal
one third of the thigh, the distal one third of the leg and
the posterior part of the calcaneum. The cluster located
on the posterior part of the calcaneum was attached
using a modified version (to be less brittle and smaller)
of the heel plate and wand [25, 26] designed by Telfer
et al. [27]. The heel plate was secured on the posterior
part of the calcaneum with athletic tape. A standardised
hole of 30 mm x 30 mm was cut into the shoes’ heel
counter (Rupert model, Athletic Works, China) to allow
the insertion of the wand into the heel plate. Fifteen vir-
tual markers, tracked with the marker clusters, were cre-
ated on the pelvis and tested lower limbs using a
digitising pointer on the following anatomical land-
marks: bilateral anterior and posterior superior iliac
spines, greater trochanter, lateral and medial femoral
epicondyles, lateral and medial malleoli, proximal and
distal part of the calcaneum posterior surface, sustenta-
culum tali and fibular tubercle. Ground reaction forces
were recorded with a force plate (Bertec Corp, OH,
USA) embedded in the floor, at a sampling rate of 2
kHz. Ankle and knee internal moments were calculated
using inverse dynamics (synchronised joint kinematics/
ground reaction forces and anthropometric data) and re-
solved in the proximal segment coordinate system.

A wireless surface electromyography (EMG) system
(Trigno Wireless; Delsys Inc., Boston, MA, United
States) was used to record the activity of gluteus medius,
vastus lateralis, gastrocnemius lateralis, fibularis longus
and tibialis anterior muscles according to the SENIAM
recommendations [28]. The four-bar formation elec-
trodes (27 x 37 x 15 mm) were made of 99% contact ma-
terial. The interelectrode spacing was 10mm, the
sampling rate was 2 kHz and the gain was 1000. To re-
duce local impedance over the electrode placement, the
skin was shaved, abraded with fine-grade sandpaper and

Page 3 of 9

cleaned with alcohol swabs. During the experimentation,
a 16 bits A/D converter was used, the common noise re-
moval ratio of the amplifier was >80dB and the max-
imal intraelectrode impedance was 6kQ. EMG data
were recorded using EMGworks software (Delsys Inc.,
Boston, MA, United States). Kinematic, kinetic and
EMG data were synchronised using Delsys Trigger Mod-
ule (Delsys Inc., Boston, MA, United States). Walking
speed was calculated with electronic photocells timing
gates (Brower Timing gate system, USA) positioned
1.35 m before and after the force plate.

During the clinical gait analysis, all participants had to
walk at a self-selected speed on a 7.5-m walkway with
the force plate located in the centre. First, participants
completed five familiarisation trials to calculate their
mean walking speed. Then, five walking trials were re-
corded. The trials during which walking speed exceeded
+5% of the previously determined mean speed or the
foot did not entirely strike the force plate were rejected
and retaken. During all trials, participants were asked to
look straight ahead and not to aim to strike the force
plate.

Data processing

Kinematic, kinetic and EMG data were analysed using
Visual 3D software (C-Motion, Germantown, MD,
United States). Ankle and knee joint angles and mo-
ments were calculated using a X (extension/flexion), Y
(adduction/abduction) and Z (internal/external rotation)
Cardan sequence. Dual-pass, fourth-order Butterworth
low-pass filters with cut-off frequencies of 6 Hz and 50
Hz were used to smooth the marker trajectories and
force plate data, respectively. Joint moments were nor-
malised to body mass. EMG data were filtered with a
zero lag, bidirectional, 20-450 Hz band-pass fourth-
order Butterworth filter. Root Mean Square (RMS) of
the raw data were calculated with a 25-ms moving win-
dow. To ensure the external validity or our results, EMG
data were normalised with the mean quiet stance RMS
amplitude for each muscle during the calibration trial.
This method was commonly used in previous studies
assessing the EMG of the lower limbs during gait in in-
dividuals with CAI [17, 29, 30]. Kinematics, kinetics and
EMG data were normalised to 100% of the stance phase
with 0% representing the initial contact with the force
plate and 100% the toe off. Both events were identified
with the force plate using a 10 N threshold.

Statistical analysis

Shapiro-Wilk’s tests were used to evaluate the distribu-
tion of the descriptive data (age, weight, height, FPI,
mean walking speed, FAAM-S, FAAM-ADL and IPAQ
scores). Mann-Whitney U tests were used to compare
age, FAAM-ADL, FAAM-S and IPAQ scores between
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the CAI and control groups as these data were not nor-
mally distributed. Independent t tests were used to com-
pare weight, height, FPI scores and mean walking speed
between groups. The distribution of EMG, kinematic
and kinetic data was evaluated using D’Agostino-Pearson
tests. As the data were normally distributed, one-
dimensional statistical parametric mapping (independent
SPM(t)) was used to compare each individual point of
the curves between the CAI and the control groups [31,
32]. Maximum mean between-group differences (MD)
and Cohen’s d effect sizes were calculated when statisti-
cally significant differences were observed. The threshold
of significance was fixed at a=5% for all analyses.
SPM(t) analyses were implemented using the open ac-
cess SPMI1D code (www.spmld.org) in MATLAB
R2020b (The Mathworks Inc., Boston, MA, USA).

Results

Demographic and gait speed data

No between-group differences were observed for age
(p=0.139), weight (p=0.234), height (p =0.704), FPI
(p=0.131), IPAQ scores (p =0.209) and walking speed
(p=0.328). FAAM-ADL (p <0.001) and FAAM-S (p<
0.001) scores were lower for the CAI compared to the
control group (See Table 1).

Kinematic data

The CAI group exhibited greater ankle inversion angles
from 14 to 48% of the stance phase (%SP) (p =0.008,
MD = +4.10° at 20%SP, d = 0.85 at 22%SP) compared to
the control group (see Fig. 1). No between-group differ-
ences in ankle sagittal and transverse angles, knee sagit-
tal, frontal and transverse angles were found. The mean
differences between the CAI and control groups and the
Cohen’s d effect sizes for all biomechanical variables are
reported in Additional files 1 and 2, respectively.

Table 1 Descriptive data

Group CAl Control
Gender ratio (M/F) 10/18 9/17

Age (years) 255 (£5.5) 23.7 (£4.1)
Weight (kg) 713 (£123) 67.3 (£12.2)
Height (m) 1.69 (+0.09) 1.70 (x0.09)
Foot posture index 5.1 (£3.1) 3.7 (£3.6)
Last sprain (yr) 19 (*19) 0.0 (+0.0)
Previous sprains 48 (+4.0) 0.0 (0.0
FAAM-ADL (%) 834 (£8.6) 100.0 (£0.0)°
FAAM-Sport (%) 61.9 (£10.6) 99.7 (£1.2)°
IPAQ (MET-min/week) 3450 (+£3265) 2508 (£2148)
Walking speed (m/s) 142 (+0.15) 146 (+£0.14)

“Statistically significant between-group differences
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Kinetic data

The CAI group exhibited greater ankle eversion mo-
ments from 40 to 78%SP (p < 0.001, MD = + 0.32 Nm/kg
at 73%SP, d = 0.88 at 63%SP) and greater knee abduction
moments from 3 to 6%SP (p=0.045, MD = + 0.23 Nm/
kg at 6%SP, d =0.91 at 5%SP) compared to the control
group (see Fig. 2). No between-group differences in
ankle sagittal and transverse moments, knee sagittal and
transverse moments were found.

EMG data

The CAI group exhibited greater peroneus longus
muscle activity from 0 to 15%SP (p = 0.003, MD = + 3.18
at 7%SP, d = 0.89 at 12%SP) and 60 to 76%SP (p = 0.003,
MD = + 14.10 at 68%SP, d = 0.88 at 66%SP) compared to
the control group (see Fig. 3). No between-group differ-
ences in gluteus medius, vastus lateralis, gastrocnemius
lateralis and tibialis anterior muscle activity were found.

Discussion

This case-control study aimed to identify lower limb
kinematic, kinetic and EMG differences between individ-
uals with CAI and healthy controls during walking. This
study was deemed important as only a few studies com-
pared the biomechanics of the lower limbs of individuals
with and without CAI using a comprehensive approach
including kinematic, kinetic and EMG measures [15, 20,
30]. Using such comprehensive approach allowed the
identification of biomechanics adaptations associated
with CAI for the same population and investigation of
how kinematic, kinetic and EMG adaptations interacted.
Also, knee moments differences between individuals
with and without CAI during gait were inconsistent and
contradictory in previous studies. Indeed, Moisan et al.
[20] reported greater and Son et al. [15] reported smaller
knee abduction moments in individuals with CAI com-
pared to controls during walking and thus further re-
search was needed to better understand the impact of
CAI on this joint. Our main hypotheses were that partic-
ipants with CAI would exhibit greater ankle inversion
angles and peroneus longus muscle activity as well as
smaller ankle inversion moments during the stance
phase of gait compared to healthy control participants.
Our results fully support these hypotheses. The main
findings were greater ankle inversion angles, reaching a
mean difference of 4.10° at 20%SP (see Additional file
1), in participants with CAI compared to controls which
are consistent with previous results [14—16]. However,
in contrary to previous findings, no significant differ-
ences in ankle inversion angles [15, 33] and moments
[15] were observed during the pre-swing phase of gait.
Delahunt et al. [14] hypothesised that to prevent exces-
sive ankle inversion movements, the peroneus longus
muscle of individuals with CAI activates strongly during
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the stance phase. Our results are consistent with this hy-
pothesis. Indeed, peroneus longus muscle activity was
greater for participants with CAI from 60 to 76%SP,
which is about the period during which the between-
group differences in ankle frontal movements started to
decrease (see Fig. 1). During the pre-swing phase, the
ankle frontal movements’ curves of the CAI and control
groups nearly overlapped (see Fig. 1), highlighting an ef-
ficient biomechanical compensatory strategy in

individuals with CAI during the latter half of the stance
phase. However, during the first half, participants with
CAI could be at greater risk of sustaining a LAS as the
ankle is in a more vulnerable position (i.e. more
inverted). Indeed, if an external perturbation (e.g., step-
ping on an uneven terrain) results into increased ankle
inversion in individuals with CAI, they would be at more
risk of sustaining a LAS as their ankle is already in a
more inverted position and their peroneus longus
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muscle presents a reflex latency and an electromechan-
ical delay of activation [34]. Thus, clinicians should
probably focus on the biomechanical deficits during the
first part of stance.

Consistent with Monaghan et al. [16] results, partici-
pants with CAI exhibited ankle eversion moments
whereas controls exhibited ankle inversion moments
during most of the stance phase. Even though between-
group differences for ankle frontal moments were only
statistically significant between 40 to 78%SP, one can ob-
serve that both curves are separated from each other for
most of the stance phase (5 to 85%SP) (see Fig. 2) with
moderate to strong Cohen’s d effect sizes (see Additional
file 2). Even if the differences are not statistically differ-
ent throughout this period, such differences could per-
haps be clinically meaningful. Changes in kinetic control
of the ankle also represent a protective mechanism to
prevent LAS and explain the greater peroneus longus
muscle activity [8].

In agreement with previous findings from our research
group, participants with CAI exhibited greater knee ab-
duction moments during the early stance [20]. This re-
sult suggests that ankle biomechanical changes in the
frontal plane induce a knee compensatory mechanism in
individuals with CAIL No between-group knee kinemat-
ics differences were observed, but the greater knee ab-
duction moments in individuals with CAI could
represent an attempt of the locomotor system to

attenuate the load and strain on the lateral structures of
the ankle using the proximal segment in the kinetic
chain. It could also represent an attempt to stabilise the
knee during the early stance and to better attenuate the
impact forces, known to be greater in individuals with
CAI [15]. No between-group difference was observed for
the vastus lateralis muscle which is consistent with pre-
vious work [20]. However, contrary to our finding, Son
et al. [15] reported a decreased vastus lateralis muscle
activity of less than 4% in individuals with CAI com-
pared to controls. As the differences were only observed
during a period when the activity of the vastus lateralis
muscle is rapidly decreasing (i.e., around 18 to 90%SP),
the results most likely have little clinical applicability.
Further studies investigating the activity of the abductor
and adductor muscles are needed to better understand
the role of the knee during walking in individuals with
CAL In our study, we observed no between-group differ-
ences for the gluteus medius muscle activity, which is
consistent with previous results [35, 36]. However, other
studies reported greater [17] or lower [15, 20] gluteus
medius muscle activity in individuals with CAI com-
pared to controls. The disparity in EMG normalisation
methods, dependent variables as well as the different ex-
perimental conditions (i.e., shod and barefoot) may per-
haps explain the inconsistencies noted in previous
results. Further studies are needed to better understand
the differences in gluteus medius muscle activity using
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standardised EMG assessment methods or novel and
promising methods such as ultrasound imaging [37].

Our study allows validation and precision of previous
results regarding the biomechanics of the lower limb of
individuals with CAI during walking, namely the in-
creased ankle inversion angles and moments as well as
peroneus longus muscle activity. In clinical contexts,
both the cause and consequence of CAI should be ad-
dressed. Sensorimotor deficits in motor-neuron pool ex-
citability, reflex reactions, muscular strength and
proprioception [38] could be responsible for the changes
in gait movement strategy in individuals with CAI [15].
Accordingly, the therapeutic goal in clinical gait rehabili-
tation should be to address the faulty ankle movements
and restore proper sensorimotor function. Impairment-
based rehabilitation programs including gait retraining
[39, 40] or exercise regimen targeting sensorimotor defi-
cits [41], prescribed independently or together [42], have
shown promising results. External feedback during gait
retraining reinforces ideal repetitive actions via opti-
mised sensorimotor loops [43] and sensorimotor train-
ing allows targeting deficits in both sensory and motor
aspects of sensorimotor control [41]. Our results will in-
form the development of future efficacy trials aiming at
determining to what extent addressing the biomechan-
ical particularities of individuals with CAI will result in
improved clinical outcomes.

Our results should be interpreted in light of a few lim-
itations. First, forefoot and midfoot segments kinematics
were not analysed. Individuals with CAI present kine-
matic changes for these segments compared to controls
during walking [44, 45]. Thus, between-group differ-
ences could have been present in our study but could
not be observed using our design. Second, as our results
suggest that the ankle biomechanical changes induce
proximal biomechanical compensations in individuals
with CAI, more studies should also investigate between-
group differences at the knee and hip joints. This is es-
pecially important as it was recently reported that indi-
viduals with CAI exhibit a hip-dominant strategy to
generate power allowing forward acceleration of the
lower limbs during gait [15]. Third, the mean age of the
recruited participants was 25.5 and 23.7 years for the
CAI and control groups, respectively. Our results could
perhaps not be generalisable for older individuals with
CAL Fourth, inherently to the chosen research design, it
is unclear if the biomechanical differences found in our
study are a cause or consequence of CAI and thus pro-
spective studies are warranted. Fifth, even though the
IPAQ scores were not significantly different between
groups, high within-group variability was observed. The
inclusion of individuals with heterogenous physical ac-
tivity levels in each group may have contributed to de-
creasing the homogeneity of our data and thus the
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ability of our analyses to reach the threshold of signifi-
cance. Sixth, as we did not include a group of copers,
our study does not provide insights regarding the bio-
mechanical differences between individuals who sus-
tained a LAS and healed normally and those who
developed CAL Seventh, even though the biomechanical
deficits exhibited by individuals with CAI during over-
ground and treadmill walking are similar [8], our results
may perhaps not be entirely generalisable during tread-
mill walking.

Conclusions

During the first half of the stance phase of gait, individ-
uals with CAI could be more at risk of sustaining recur-
rent LAS mostly due to greater ankle inversion angles.
However, the greater ankle eversion moments and pero-
neus longus muscle activity during the second half of
the stance phase could be an efficient mechanism to cor-
rect this maladaptive gait pattern and allow attenuation
of the faulty ankle movements during the pre-swing
phase. Rehabilitation protocol should focus on the faulty
ankle movements during the initial stance.
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